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1 Implementation Details

1.1 Models
We use a publicly available CogVideoX-5B [2, 6] text-to-video model,
which is trained on video clips of the length of up to 49 frames and
720x480 resolution. Consequentially, our results are in the same reso-
lution with the same number of frames. This model is a transformer-
based model that processes both text and video modalities together.
For text-based segmentation the prominent objects in the video and
the newly generated content we utilize EVF-SAM [8] - a text-base
video segmentation model based on SAM2 [4]. Our vision-language
model of choice is GPT-4o [3], which we use through the provided
Python API.

Original Frames OursMagicVFX

“colorful bubbles”

“car on fire”

Fig. 1. Comparison to MagicVFX. The result of MagicVFX the output differs
significantly from the original video.
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1.2 Keys and Values Extraction
Following [5, 7], to obtain T2V diffusion model intermediate latents,
we use DDIM inversion (applying DDIM sampling in reverse or-
der) on the input video, using 1000 forward steps, with an empty
string as text prompt. During the forward pass in our method, the
intermediate latents are used for the extraction of keys and values.

1.3 VLM Prompting
While the model gives an accurate, descriptive source scene caption,
in some cases, we observed that it fails to give captions suitable for
compositing VFXwith the scene. To overcome this, we ask themodel
to imagine a conversation with a visual effects (VFX) artist to obtain
a caption that would describe the composited scene correctly. In this
conversation, GPT-4o will "consult" with a VFX artist about how
the new content should be integrated into the scene. Based on their
discussion, it will be asked to provide a caption that describes how
the added content fits into the scene. This results in text prompts
that encourage the generated output video to include a natural
interaction between the new content and the original environment.
In this prompt, we also ask the VLM to provide a list of prominent
foreground objects in the original video: Oorig and the object that
will be added according to the edit prompt: Oedit. The full prompt
for the VLM is shown in Figure 2.

In addition, as discussed in Sec. 5.2 we utilize the VLM for inter-
pretable quality assessment. The full set of instructions for the VLM
can be seen in Fig. 3.

1.4 Latent Mask Extraction
As discussed in Sec. 4.3, we iteratively update the residual latent
𝒙𝑟𝑒𝑠 in the regions where the new content appears. This requires
calculating the mask of the new content in the latent space. To
do this, we first apply the segmentation model [8] to the current
output of SDEdit and get the mask of the new content in RGB space.
However, the VAE in the T2V diffusion model involves both spatial
and temporal downsampling, making it challenging to directly map
RGB pixels to their corresponding latent regions. To address this,
we encode the RGB masks through the VAE-Encoder and apply clus-
tering to partition the resulting latents into two groups, effectively
producing downsampled masks that align with the latent space
representation.

1.5 Runtime
Our method’s two most computationally intensive parts are - DDIM
inversion, which takes ~15 minutes, and iterative updates of the edit
residual, which takes ~20 minutes. Importantly, DDIM inversion
needs to be performed only once per video and can support multiple
subsequent edits, making the process more efficient when applying
various modifications to the same video content.
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You will receive a few images of the source scene and a description of new content to be added to the scene. It is possible that you will receive a source prompt as well.
 Your task is to provide two captions based on the following steps:
Source Scene Caption:
**Note**: If a source scene prompt is provided, use it as is!
Provide a detailed description of the source scene without considering the added content.
Focus on the existing objects, environment, and actions in the scene.
Ensure the description maintains the original mood and setting.
VFX Conversation:
Imagine a conversation with a Visual E�ects (VFX) artist about how the new content should be integrated into the scene. 
Remember, the new content can be objects or multiple objects or e�ect or really anything the user provides. so be clear to explain this to the VFX artist.
The new content should interact naturally with the environment (e.g., shadows, lighting, or physical elements like grass, water, or other objects) but without altering the dynamics of the source scene.
The object must fit into the scene without a�ecting the original characters' behavior or actions.
The interaction between new content and foreground object must be included (e.g. object A is interacting with object B). in terms of dynamics and motion as well.
Describe how the object interacts and how it blends into the scene.
Composited Scene Caption:
Based on the conversation with the VFX artist, provide a caption that describes how the added content fits into the scene.
The caption must reflect natural interaction between the new content and the environment (e.g., lighting, shadows, physical e�ects), while ensuring the original dynamics remain unchanged.
The content should be aware of the surroundings, but the behavior, and flow of the original scene should remain consistent.
 The overall atmosphere might change of course due to this addition to scene.
**Output format*** -  a dictionary with keys: "source_scene_caption", "vfx_conversation", and "composited_scene_caption".
- **source_scene_caption**: source_scene_caption will be - A detailed caption of the source scene. If provided, use the given caption.
- **vfx_conversation**: A simulated conversation about how the new content should be integrated into the scene.
- **composited_scene_caption**: will be - A detailed caption of the composited scene, integrating the new content.
**Note**:The composited_scene_caption and source_scene caption must each have between 90-95 words. Extra words will be ignored.
**Note**:The vfx_conversation could be as long as required in order to succeed.
**Note**: Don't start the composited_scene_caption with - "The scene now.." or "Added to the scene" "Scene has transformed", 
the composited_scene_caption should be understandable to anyone that does not have access to the source_scene_caption.
And you should not simply concatenate between the source and composition. 
You should have an entirely new caption that describes the essence of the integrated scene with both the source content and new content.
Don't use anything similar to "now the scene"

Fig. 2. VLM instructions used for generating the textual descriptions.

You are a helpful assistant that pays attention to context and estimates the perceptual quality of provided videos, specifically for the task of integrating new content into a given video.

I would like you to help me estimate the quality of an edited videos based on the original frames along with text descriptions.

You will be shown four grids. Each grid will be of the following type: left column will contain three frames from the original video. 
The next 2 columns will each contain three frames from di�erent video editing methods. Above each column there will be a caption (original video, 1, 2, ...). 
Each method's task is to integrate the new content into the source video according to the edit prompt.

The prompt describing the original video is "{original_prompt}". The edit prompt for all of the methods is "{edit_prompt}". 
Now, please conduct a perceptual quality comparison in terms of 1) alignment with the edit prompt; 2) visual quality,  3) new content harmonization and 4) dynamics

For each method provide a score from 0 to 1 for each of the five criteria with higher scores indicating better results.  
Your response must include a concise description regarding the perceptual quality of each method and a score to summarize quality for each criterion while well aligning with the given description.
1) When assessing the alignment with the edit prompt, consider how well the method follows the edit prompt and if the frames contain the desired content. 
If the method fails to follow the edit prompt, the score should be low.
2) For visual quality, consider how realistic the frames look - are there any visual artifacts, are the lighting and colors realistic, are the objects in the image recognizable.
3) For content harmonization - how well the content is harmonized with the scene, are the proportions of the added content correct, is the depth 
and perspective of the added content consistent with the scene. Is placement of the added object physically realistic - does it look like it belongs in the scene or does it look out of place. 
Are the occlusions of the added content consistent with the scene.
4) For dynamics assessment - how realistically the added object is moving relatively to the scene. Is its motion aligned with the camera motion of the original video? If the object, for example floats unrealistically or flickers, the score should be low.

Fig. 3. VLM evaluation protocol

2 Additional comparisons
We perform an additional qualitative comparison to MagicVFX [1].
As can be seen in Fig. 1, MagicVFX struggles to remain faithful to
the original scene and has lower visual quality compared to our
method.
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Algorithm 1 DynVFX Algorithm
Input:
Vorig, PVFX ⊲ Input video & instruction prompt
𝜏A ⊲ Extended Attention threshold
Ψ ⊲ Video segmentation model
VLM ⊲ Vision Language model

Preprocess:
Pcomp ← VLM[Vorig, PVFX ] ⊲ Composition Prompt
Oorig, Oedit ← VLM[Vorig, PVFX ] ⊲ Original objects and VFX object
𝑀𝑜𝑟𝑖𝑔 ← Get-Latent-Mask(Ψ;Vorig, Oorig ) ⊲ Extract source masks
𝑥𝑜𝑟𝑖𝑔 ← Encode[Vorig ] ⊲ Encode video into latent space
Korig,Vorig ← DDIM-Inv[𝑥𝑜𝑟𝑖𝑔 ] ∀𝑡 ∈ [𝑇 ]

For 𝑡 = 𝑇, . . . ,𝑇𝑚𝑖𝑛 do
𝒙𝑟𝑒𝑠 = 0 ⊲ initialize the residual latent
𝒙𝑐𝑜𝑚𝑝 = 𝑥𝑜𝑟𝑖𝑔 + 𝑥𝑟𝑒𝑠
if 𝑡 > 𝜏𝐴 then 𝐾𝐸 ,𝑉 𝐸 ← F(𝐾orig |𝑀orig ), F(𝑉orig |𝑀orig )
else 𝐾𝐸 ,𝑉 𝐸 ← ∅
�̂�𝑐𝑜𝑚𝑝 ← Sampling[𝑥𝑐𝑜𝑚𝑝 , Pcomp, 𝑡 ; AnchorExtAttn[𝐾𝐸 ,𝑉 𝐸 ] ]
V̂𝑐𝑜𝑚𝑝 ← Decode(�̂�𝑐𝑜𝑚𝑝 ) ⊲ Decode latent
𝑴𝑉𝐹𝑋 ← Get-Latent-Mask(Ψ; V̂𝑐𝑜𝑚𝑝 , Oedit ) ⊲ Extract VFX masks
𝒙𝑟𝑒𝑠 = 𝑴𝑉𝐹𝑋 · (𝑥𝑐𝑜𝑚𝑝 − 𝑥𝑜𝑟𝑖𝑔 )

𝒙𝑐𝑜𝑚𝑝 = 𝑥𝑜𝑟𝑖𝑔 + 𝑥𝑟𝑒𝑠
Vcomp ← Decode[𝑥𝑐𝑜𝑚𝑝 ] ⊲ Output video
Output: Vcomp
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